

Birkhoff–von Neumann decomposition of doubly stochastic matrices

This package provides Birkhoff’s algorithm for computing the Birkhoff–von
Neumann decomposition of a doubly stochastic matrix.

Source code [https://github.com/jfinkels/birkhoff] · Packaging [https://pypi.python.org/pypi/birkhoff] · Issues [https://github.com/jfinkels/birkhoff/issues]

Installation

pip install birkhoff

Basic usage

import numpy
from birkhoff import birkhoff_von_neumann_decomposition

Create a doubly stochastic matrix.
#
D = numpy.array(...)

The decomposition is given as a list of pairs in which the right element
is a permutation matrix and the left element is the scalar coefficient
applied to that permutation matrix in the convex combination
representation of the doubly stochastic matrix.
result = birkhoff_von_neumann_decomposition(D)
for coefficient, permutation_matrix in result:
 print('coefficient:', coefficient)
 print('permutation matrix:', permutation_matrix)

Mathematical background

A doubly stochastic matrix is a matrix in which each row and each column sum
to one. In other words, a matrix \(D\) is doubly stochastic if

\[\begin{split}D 1 & = 1 \\
1^T D & = 1^T\end{split}\]

A permutation matrix is a matrix in which each entry is either zero or one.
By the Birkhoff–von Neumann Theorem [https://en.wikipedia.org/wiki/Doubly_stochastic_matrix#Birkhoff_polytope_and_Birkhoff.E2.80.93von_Neumann_theorem], each doubly stochastic matrix is a
convex combination of permutation matrices. In other words, for each \(n
\times n\) doubly stochastic matrix \(D\), there is a sequence of real
numbers \(\alpha_1, \dotsc, \alpha_N\) and permutation matrices \(P_1,
\dotsc, P_N\) such that

\[D = \sum_{i = 1}^N \alpha_i P_i\]

where \(\sum_{i = 1}^N \alpha_i = 1\) and the number \(N\) is
guaranteed to be at most \(n^2\). Furthermore, the proof of the
Birkhoff–von Neumann Theorem provides an explicit algorithm for computing each
\(\alpha_i\) and \(P_i\). This is the algorithm employed by
the birkhoff_von_neumann_decomposition() function.

The theorem and corresponding algorithm also apply to scalar multiples of
doubly stochastic matrices, that is, matrices of the form \(c D\), for some
positive real number \(c\).

Birkhoff’s Algorithm

Describe the algorithm here.

API

	
birkhoff.birkhoff_von_neumann_decomposition(D)

	Returns the Birkhoff–von Neumann decomposition of the doubly
stochastic matrix D.

The input D must be a square NumPy array representing a doubly
stochastic matrix (that is, a matrix whose entries are nonnegative
reals and whose row sums and column sums are all 1). Each doubly
stochastic matrix is a convex combination of at most n ** 2
permutation matrices, where n is the dimension of the input
array.

The returned value is a list of pairs whose length is at most n **
2. In each pair, the first element is a real number in the interval (0,
1] and the second element is a NumPy array representing a permutation
matrix. This represents the doubly stochastic matrix as a convex
combination of the permutation matrices.

The input matrix may also be a scalar multiple of a doubly
stochastic matrix, in which case the row sums and column sums must
each be c, for some positive real number c. This may be useful
in avoiding precision issues: given a doubly stochastic matrix that
will have many entries close to one, multiply it by a large positive
integer. The returned permutation matrices will be the same
regardless of whether the given matrix is a doubly stochastic matrix
or a scalar multiple of a doubly stochastic matrix, but in the
latter case, the coefficients will all be scaled by the appropriate
scalar multiple, and their sum will be that scalar instead of one.

For example:

>>> import numpy as np
>>> from birkhoff import birkhoff_von_neumann_decomposition as decomp
>>> D = np.ones((2, 2))
>>> zipped_pairs = decomp(D)
>>> coefficients, permutations = zip(*zipped_pairs)
>>> coefficients
(1.0, 1.0)
>>> permutations[0]
array([[1., 0.],
 [0., 1.]])
>>> permutations[1]
array([[0., 1.],
 [1., 0.]])
>>> zipped_pairs = decomp(D / 2) # halve each value in the matrix
>>> coefficients, permutations = zip(*zipped_pairs)
>>> coefficients # will be half as large as before
(0.5, 0.5)
>>> permutations[0] # will be the same as before
array([[1., 0.],
 [0., 1.]])
>>> permutations[1]
array([[0., 1.],
 [1., 0.]])

The returned list of pairs is given in the order computed by the algorithm
(so in particular they are not sorted in any way).

Changes

Released on December 19, 2017.

	Updated code to work with NetworkX version 2.0 (issue #3).

 Python Module Index

 b

 		 	

 		
 b	

 	
 	
 birkhoff	

Index

 B

B

 	
 	birkhoff (module)

 	
 	birkhoff_von_neumann_decomposition() (in module birkhoff)

 nav.xhtml

 Table of Contents

 		
 Birkhoff–von Neumann decomposition of doubly stochastic matrices

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

