
birkhoff Documentation
Release 0.0.5

Jeffrey Finkelstein

Dec 19, 2017

Contents

1 Installation 3

2 Basic usage 5

3 Mathematical background 7
3.1 Birkhoff’s Algorithm . 7

4 API 9

5 Changes 11

Python Module Index 13

i

ii

birkhoff Documentation, Release 0.0.5

This package provides Birkhoff’s algorithm for computing the Birkhoff–von Neumann decomposition of a doubly
stochastic matrix.

Source code · Packaging · Issues

Contents 1

https://github.com/jfinkels/birkhoff
https://pypi.python.org/pypi/birkhoff
https://github.com/jfinkels/birkhoff/issues

birkhoff Documentation, Release 0.0.5

2 Contents

CHAPTER 1

Installation

pip install birkhoff

3

birkhoff Documentation, Release 0.0.5

4 Chapter 1. Installation

CHAPTER 2

Basic usage

import numpy
from birkhoff import birkhoff_von_neumann_decomposition

Create a doubly stochastic matrix.
#
D = numpy.array(...)

The decomposition is given as a list of pairs in which the right element
is a permutation matrix and the left element is the scalar coefficient
applied to that permutation matrix in the convex combination
representation of the doubly stochastic matrix.
result = birkhoff_von_neumann_decomposition(D)
for coefficient, permutation_matrix in result:

print('coefficient:', coefficient)
print('permutation matrix:', permutation_matrix)

5

birkhoff Documentation, Release 0.0.5

6 Chapter 2. Basic usage

CHAPTER 3

Mathematical background

A doubly stochastic matrix is a matrix in which each row and each column sum to one. In other words, a matrix 𝐷 is
doubly stochastic if

𝐷1 = 1

1𝑇𝐷 = 1𝑇

A permutation matrix is a matrix in which each entry is either zero or one. By the Birkhoff–von Neumann Theorem,
each doubly stochastic matrix is a convex combination of permutation matrices. In other words, for each 𝑛×𝑛 doubly
stochastic matrix 𝐷, there is a sequence of real numbers 𝛼1, . . . , 𝛼𝑁 and permutation matrices 𝑃1, . . . , 𝑃𝑁 such that

𝐷 =

𝑁∑︁
𝑖=1

𝛼𝑖𝑃𝑖

where
∑︀𝑁

𝑖=1 𝛼𝑖 = 1 and the number 𝑁 is guaranteed to be at most 𝑛2. Furthermore, the proof of the Birkhoff–von
Neumann Theorem provides an explicit algorithm for computing each 𝛼𝑖 and 𝑃𝑖. This is the algorithm employed by
the birkhoff_von_neumann_decomposition() function.

The theorem and corresponding algorithm also apply to scalar multiples of doubly stochastic matrices, that is, matrices
of the form 𝑐𝐷, for some positive real number 𝑐.

3.1 Birkhoff’s Algorithm

Describe the algorithm here.

7

https://en.wikipedia.org/wiki/Doubly_stochastic_matrix#Birkhoff_polytope_and_Birkhoff.E2.80.93von_Neumann_theorem

birkhoff Documentation, Release 0.0.5

8 Chapter 3. Mathematical background

CHAPTER 4

API

birkhoff.birkhoff_von_neumann_decomposition(D)
Returns the Birkhoff–von Neumann decomposition of the doubly stochastic matrix D.

The input D must be a square NumPy array representing a doubly stochastic matrix (that is, a matrix whose
entries are nonnegative reals and whose row sums and column sums are all 1). Each doubly stochastic matrix is
a convex combination of at most n ** 2 permutation matrices, where n is the dimension of the input array.

The returned value is a list of pairs whose length is at most n ** 2. In each pair, the first element is a real
number in the interval (0, 1] and the second element is a NumPy array representing a permutation matrix. This
represents the doubly stochastic matrix as a convex combination of the permutation matrices.

The input matrix may also be a scalar multiple of a doubly stochastic matrix, in which case the row sums and
column sums must each be c, for some positive real number c. This may be useful in avoiding precision issues:
given a doubly stochastic matrix that will have many entries close to one, multiply it by a large positive integer.
The returned permutation matrices will be the same regardless of whether the given matrix is a doubly stochastic
matrix or a scalar multiple of a doubly stochastic matrix, but in the latter case, the coefficients will all be scaled
by the appropriate scalar multiple, and their sum will be that scalar instead of one.

For example:

>>> import numpy as np
>>> from birkhoff import birkhoff_von_neumann_decomposition as decomp
>>> D = np.ones((2, 2))
>>> zipped_pairs = decomp(D)
>>> coefficients, permutations = zip(*zipped_pairs)
>>> coefficients
(1.0, 1.0)
>>> permutations[0]
array([[1., 0.],

[0., 1.]])
>>> permutations[1]
array([[0., 1.],

[1., 0.]])
>>> zipped_pairs = decomp(D / 2) # halve each value in the matrix
>>> coefficients, permutations = zip(*zipped_pairs)

9

birkhoff Documentation, Release 0.0.5

>>> coefficients # will be half as large as before
(0.5, 0.5)
>>> permutations[0] # will be the same as before
array([[1., 0.],

[0., 1.]])
>>> permutations[1]
array([[0., 1.],

[1., 0.]])

The returned list of pairs is given in the order computed by the algorithm (so in particular they are not sorted in
any way).

10 Chapter 4. API

CHAPTER 5

Changes

Released on December 19, 2017.

• Updated code to work with NetworkX version 2.0 (issue #3).

11

birkhoff Documentation, Release 0.0.5

12 Chapter 5. Changes

Python Module Index

b
birkhoff, 9

13

birkhoff Documentation, Release 0.0.5

14 Python Module Index

Index

B
birkhoff (module), 9
birkhoff_von_neumann_decomposition() (in module

birkhoff), 9

15

	Installation
	Basic usage
	Mathematical background
	Birkhoff’s Algorithm

	API
	Changes
	Python Module Index

